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Abstract

Recently proved theorems concerning weak convergence of non-Markovian

processes to diffusions, together with an averaging and a stability method, are

applied to two (learning or adaptive) processes of current interest: (1) an

automata model for route selection in telephone traffic routing, (2) an

adaptive quantizer for use in the transmission of random signals in communica-

tion theory. The models are chosen because they are prototypes of a large

class to which the methods can be applied. The technique of application of

the basic theorems to such processes is developed. Suitably interpolated and

normalized "learning or adaptive" processes converge weakly to a diffusion,

as the "learning or adaptation" rate goes to zero. For small learning rate,

the qualitative properties (e.g., asymptotic (large-time) variances and para-

metric dependenceJ of the processes can be determined from the properties of

the limit.
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I. INTRODUCTION

References [7], [1] develop a useful method to study the asymptotic proper-

ties as c - 0 and nr < I < for any real T of solutioni to stachatic difforence

equations of the form

(1.1) = + Ch (Y-,-n ) + g E(Y n + 0(E) y n ERr
n+l n + n n n n

where the distributions of the random sequence {nC) might depend on the {Yn}.
n n

Such equations occur frequently in applications. The methods in Il] also work

when E is replaced by a sequence c 4 0 as n 4 - from which asymptotic proper-n

ties (rates of convergence) of various forms of stochastic approximations can

be obtained.

The emphasis in [I] (an application of [7]) concerned the case where the

h and g are smooth, and no details for the non-smooth case or its applications

were given, nor was the asymptotic case where n - -, then E - 0 treated. This

is a deficiency, since in many applications in communication, control and

automata theory, the h and g might simply be indicator functions and theC

noise { } depend on (Y£ E, and th asymptotic properties (as n , then £ + 0)
n n

desired. Here, we apply the basic results of [7] to two such problems. The

two problems have-current technoloqical importance in their own right and each

has been the subject of a great deal of work. Our method often yields a complete

analysis of the asymptotic properties under realistic conditions. The two

problems are typical of a wide class, and they illustrate the power and

applicability of the general technique, as well as the method of applying it

to concrete problems. In a sense the metod is an extension with more complex

memory structure of the sort of "slow learning" results obtained by Norman [9],

and should have broad applications to the areas cited above.

I
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The basic type of result is the following. Define Y ., t (C [0,-), by

Y (0) = Yand (t) = Y. on [ic,iE+E). Under appropriate conditions,

0 1

Theorem 1 qives weak convergence of {Y' (-)} in Dr [0,") to a particular diffusion

process, as E - 0. Now, let {n ) denote a sequence of integers tending to

'\'F
as c 0. For t > 0, define Y (t) Y:(t+En ). The tilde - always denotes a

shift by n (discrete parameter) or cn (continuous parameter). By using

Theorem 1 but starting {Y£} at time n instead of at time 0, we will get an C

great deal of information on the asymptotic properties (large n, small ). j
The next section gives some background material from [7]. Sections III to VI

treat a learning automata approach to certain problems in adaptive routing of

telephone calls [2]-13]. The second problem, in Sections VII-VIII, concerns

the asymptotic theory of an adaptive quantizer from communications applications i
[4], [5].

I
I
I
I
I
I
I.
I



-3-

II. SOME BACKGROUND MATERIAL

Dr [0,-) denotes the space of Rr-valued functions on [0,-) which are right-

continuous and have left-hand limits, and is endowed with the Skorokhod topology

A

[6]. denotes the continuous functions on Rr x [0,-) with compact support

and a the subset whose mixed partial derivatives up to order a in t and
0

in the componentsof x are continuous. Let b.(,), a. (,), i,j < r, be con-1 1]

r
tinuous functions on R x [0,-). Let the operator

11 1.,
2
IA b b (x , t 0 - + a , ai (x 't 0 x .ax2

be the infinitesimal operator of a diffusion process X(.). Assume that the

solution to the martingale problem (on D r[0,)) of Strook and Varadhan [8]

corresponding to A has a unique non-explosive solution for each initial con-

dition.

Let b N(') denote a function with values in [0,1], equal to 1 on S =

r{x: lxi<N}, equal to zero in Rr-SN+ 1 and with second derivatives bounded

ENuniformly in x and N. Define {YE ,n n>0) byn

C N , ,N C. - ,N C cn

(2.1) y ,N = y + [ch (Y + V*g (Yn 'S) + o(c)]b (Y ,N)
n+l n C n n n n N n

Y = Y if JY0J < N and is zero otherwise,
0 0 if 10

and define yEN(.) analogously to Y-(.). For purely technical reasons, it is

convenient to state the theorem in terms of {Y, N}. Let AN be the infinitesimal
n

operator of a (not necessarily unique) diffusion process, denoted by XN(.,

and suppose that its coefficients % bN(,.) are continuous, bounded,I

--.
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have compact support and equal a(-,.), b(-,-) in S . Suppose that {Y (,N

converges weakly to some such x () as L + 0, for each N. Then [7] {Y (.)}

converges weakly to X(.) as n - , The following theorem is a restatement of

Theorem 3 of [7] with T = t. Theorem 2 of [7] provides a very convenient

method of proving tightness, and we will use it in the sequel. Let EL,N denote~n

expectation conditioned on {Y. j<n, i, j<n}.

Theorem 1. Assume the conditions stated above on the solution to the martingale

problem on Dr [0,) corresponding to operator A, and on AN and XN(.). For each

N, and f(,)E "2, a dense set (sup norm) in 0 let there be a sequence
0'

{fE,N(.)} satisfying the following conditions: it is constant on each interval

[nE,nc+E), at ne it is measurable with respect to the a-algebra induced by

yE,N, j<n,, j<n} and

(2.2) sup EIfE'N(nE) I + sup 1 En N (n+c)-f 'NInc)l <

n,E n,c

and as £ 0 and for each t as nc - t,

(2.3) EIf£'N(ne) - f(Yc'N nE)l 0,
n

E E'Nf 'N (nc+e)-fE'N (n)

(2.4) E n - ( + A N MY 'N,n) 0.

Then, if {y£,N(.), E0>>0} is tight in Dr [0,-) for each N, where C does not j
depend on N and Y (0) converges weakly to X(O), {Yc(.) converges weakly to

X(-), the unique solutich to the martingale problem with initial condition X(O). j
I'
I

N- - - - ---------------.----.-.------. n-- -
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III. AN AUTOMATA PROBLEM - INTRODUCTION

Narendra [21, [31 and others have studied the application of automata and

learning theory to problems in the routing of telephone calls through a multi-

node network and have suggested a variety of interesting automata models for

this application. Under various assumptions (both explicit and implicit) they

have stated convergence results in a number of cases. Generally, their results

are applications of Norman's [9] results on slow learning. Here, we take one

of their models and show how to apply Theorem 1 to get a much more complete

asymptotic theory (large time) for small rate of change of the automata behavior

(), and under more realistic conditions. The case dealt with here can readily

be generalized - as will be commented on below. The example illustrates the

power and usefulness of the approximation techniques used here. The algorithm

should be considered as a prototype. It might not be the best, but it well

serves to illustrate the method.

The problem formulation. Calls arrive at a transmitting or switching

terminal at random at discrete time instants n = 0,1,2,..., with P{one call

arrives at nth instant) = V, )i C (0,1), P{>1 call arrives at nth instant) = 0.

From the terminal, there are two possible routings to the destination, route

1 and route 2, the ith route having N. independent lines - and can thus handle1

up to N. calls simultaneously. Let [n,n+l) denote the nth interval of time.
1

The duration of each call is a random variable with a geometric distribution:

P{call completed in the (n+l)st intervalluncompleted at end of nth interval,

route i used) - i, A_ . (0,1). The members of the double sequence of the

interarrival times and call durations are mutually independent. It is possible

to work with more general Markovian arrival processes, but we retain a simple

structure in order to emphasize the main points. In practice, a more complex

I
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network would occur - and perhaps cycles might exist, and a vector routing

parameter would be used, one component per node. But the main idea is similar.

As in Theorem 4, the average dynamics are used for the stability analysis.

From that point on, the proof of the appropriate qenUralization of Theorem 5

would be quite similar to the proof of Theorem 5.

The parameter c will be used for the rate of adjustment of the routinq

automaton- the device which selects the route. The adjustment mechanism will

be defined later. The routing automaton operates as follows. For each fixed

c, let {yc) denote a sequence of random variables - with values in [0,1]. In
n

order to have an unambiguous sequencing of events, suppose that the calls ter-

1
minating in the nth interval actually terminate at time n+2, and arrivals and

route assignments are at the instants 0,1,2,... precisely. Thus the state at

time (n+l) does not include the calls just terminated or calls arriving at (n+l).

E,l c,2 FE,i
Define the "route occupancy process" Xt  (X ,X X ), where X is the number

n n n n
+ x(,i

of lines of route i occupied at time n . Thus, X < N.. If a call arrives at
n - 1

instant n-l, the automaton "flips a coin", and chooses route 1 with probability

y and chooses route 2 with probability (1 -y ). If all lines of the chosen route

i ale occupied at instant (n+l), then the call is switched to route j (j $ i)

If all lines of route j are also occupied at instant (n+l) , then the call is

rejected, and disappears from the system. j
In a more realistic situation, the network would have many nodes - not

simply 2, and many possibilities of routing from node to node. The adjustment

algorithm might be different, but the problem would be handled in exactly the

same way. The object is to adjust the {yC) sequentially (based on the system I
behavior) so that some desired behavior occurs. In order to be specific, we .
use the followinq "linoar-tward" algorithm 13]. Let jE denote the indicator

in

I'
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of the event Icall arrives at j+l, is assigned first to route J and is

accepted by route i). For practical as well as theoretical purposes, it is

important to bound y away from the points 0 and 1. Let 0 < y£ < y 1. We
Yu

use the algorithm (3.1), where denotes truncation at yu or y, and a(y)Y

l-y, B(y) = -y.

(3.1) Y = [y + Eiy)J + y U

n1 n i n n 2nll,

Define a ( B (-) such thata(-) = a (') in [y£,yu- ] and S() =

E (-) in [y Z +,y land otherwise arc such that (3.2) is equivalent to (3.1):

(3.2) E = y C + n[a (YEJC + B (yE )JI
n+l n C n in E n 2n

We will study the asymptotics of the behavior of a centered and normalized

{yn} for small E. Part of the difficulty, which our scheme is well able to

handle, is due to the fact that y} is not Markovian. In the theoretical parts
n

of [2], [3), the problem is set up so that {ynC I is Markovian.

Some definitions. If the choice probabilities y are held fixed at some

value y for all n, then the route choice automaton still makes sense, although

there is no learning. For fixed route selection probability y E (0,1), let

[Xn(Y)} = {(l(y),X 2(y)), O<n<-} denote the corresponding route occupancyn n n

process. For the process {Xn (y) ), the state space Z - {(i,j): i<NIj<N2 ) (whose

points are supposed ordered in some fixed way) is a single ergodic class, and the

I
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probability transition matrix, denoted by A' (y), ha; infinitely differentiable

components. With qiven initial condition WP{X (y)=(t, tC-ZI define 1n(Ciy) =

P{X (y)=al} and the vector P (y) = {P (a l y), ue Z}. Then

(3.3) P n+l(y) = A(y)P n(y).

The pair i(X ,yL ) , n>0 is a Mairkov procesis on Z \ [yv,yu I and the inar9 inal

transition probability P{XC n=(k,) IX'=(i,j), y') is just the ((i,j)-column,

(k,t)-row) entry of Ag(yE). Define the vector PC = {PE: U), cGZ) where P() =
n n n n

{XE=a yl, i<n, X} Then
n k x0}

, .
(3.4) P+ = A(yn)P

n+l n n

Also, let P(y) = {P(aly), cxG.Z} denote the unioue invariant measure for {X (y)),' n '

with marginal defined by P1 (jly) = lkP(J,kly), P1 (y) = {PI(jly), j<N }, and

similarly for route 2. Finally, define the transition probability P(c,j,a ly) =

P{Xj (y)=al1X0 (y)=i} and write the marginal as

Pi(a,j,kly) = P{Xi(y)=kiX (y))d.
J 0

Define E € to be the expectation conditioned on {Xc y E<n}

Ni
A relationship of (3.1) to a differential equation. Define vi (-Xi.)

Note that

(3.5a) E C J y [I - VlI{X' 'N ],
n In n 1 ri
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(3.5b) E = C(l-y )[E - V2I{X '2=N 1].
n 2n n 2 n 2

For small E, it is reasonable to try to relate the behavior of {yL} to then

solution of (3.6), where F(y) is just EJcx(y)J 1 i(Yy)J ], but with {XC'yL
in 2n n n"

replaced by {X (y),y) and using the stationary measure.

(3.6) = jc(y)yfl-v 1P 1 (N1 ly)] - L(l-y)B(y) Il-v 2 P 2 (N2 Iy)]

= by(l-y) v2P 2 (N2 Iy) - V1 P1 (N1 IY)] I F(y).

As y increases, P1 (N l y) increases (and P2 (N2Iy) decreases) monotonically.

Thus, there is a unique point y C (Ol) such that F(y) = 0. Also, F(y) > 0

for y < y and F(y) < 0 for y > y. We assume that y C (y£,yu) and we also make

the apparently unrestrictive assumption that Fy(y) # 0. We actually will study

the asymptotic properties of U (yCy)/4r, for large n and small e. In
n n

particular, let n be a sequence of integers tending to - as c - 0, and define

the processes UC (.) by UE (0) = U6  and 6E;(t) = UE on licic+). When the
n n +i
C C

U (-) are dealt with, the {n } will either be explicitly defined or their

values will be unimportant. We show weak convergence of {5(.)} to the Gauss-

Markov diffusion u(') defined by (6.3). If n -- fast enough as e -* 0, then

the limit u(.) is stationary. The general method can be applied to many other

problems in learning, automata and systems theory.

I

1 Ium nmmu mau mlmm I K nununn nun n l



-10-

IV. SOME PRELIMINARY RESULTS

In this section, we prove some auxiliary results concerning uniform con-

vergence of P (y) and its derivatives to P(y) and its derivatives.
n

Theorem 2. For each y E [yeyu 1 , let A'(y) denote a Markov transition matrix

(continuous in y) such that the corresponding Markov chain {X (y)) is ergodic

with invariant measure P(y). Then P(-) is also continuous and there is a 6 > 0

such that the eigenvalues of A(y), except for the single eigenvalue unity,

are bounded in absolute value by 1-6 for all y y [y,yu]. P (y) converges ton

P(y) uniformly (and at a geometric rate) in y £ [y£,yuI and in P0 (y).

Proof. The last sentence follows from the penultimate sentence. The

continuity of P(.) is a consequence of the uniqueness for each y, of the eigen-

vector of A(y) corresponding to the eigenvalue unity (the invariant measure).

Next, suppose that there is no such 6. Let A(y) be a qxq matrix and let

l(y) , .... X q(y) denote the eigenvalues. Order them such that X (y) 1 1.

Then there is a y and a sequence {yn}C yyu such that as yn - y, at least

one eigenvalue (other than the one which is always unity) approaches the unit

circle. In particular, suppose that the ordering is such that Ix2 (Yn)I - 1

and that (choosing a subsequence if necessary) the Ai(Y n) converge to some A

as n -- , for i = 1,...,q. The {1} must be the eigenvalues of A(y). But

then A'(y) is not the transition matrix of an ergodic process, a contradiction.

Q.E.D.

• ... - .. .. ... " ... .. .... '' mm ... .. m w m m mmmmmk-mm mm mm m l mm m m m mm mM



Definition. Let E(y) denote the span of the eigenvectors and generalized

eigenvectors of A(y), except for the eigenvector which corresponds to the

eigenvalue unity.

Theorem 3. Assume the situation of Theorem 1, but let A(-) be continuously

differentiable on [y£,yu] (at the endpoints, take the left- or right-hand deri-

vatives, as appropriate); then so is P(), and P y(y) is the unique solution in

E(y) to the equation

(4.1) P (y) = A(y)P (y) + A (y)P(y).

Furthermore, the derivative P n,y(y) given by

(4.2) P n+l,y(y) = A(y)P n,y(y) + A (y)P n(y)

converges geometrically to P y(y), uniformly in y E [YY u] and in the initial

condition P0 (y), if we set P 0 ,y(y) = 0.

If A(.) has continuous second derivatives on [y£,yu1, then so do P() and

P (.), and P y(y) is the unique solution in E(y) to
n -y

(4.3) P yy(y) = A(y)P yy(y) + 2A y(y)P y(y) + A yy(y)P(y).

Also, P n,yy(y) converges geometrically to P y(y), uniformly in yE [y,yu I
and in the initial conditions, if P 0 ,y(y) - 0.

I
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Proof. Fix y. Since (I-A(y))V = 0 for V C )(y) implies that V = 0, in

order for (4.1) to have a unique solution in X(y) it is necessary and suffic-

ient that A (y) P(y) .I *(I-A'(y)), where * denotes the null space of theY

matrix. _/(I-A'(y)) is the set of vectors Q such that A'(y)Q = Q. Since there

is a unique eigenvalue of value unity and since the row sums of A'(y) are all

unity, the components of Q must all have the same value. Thus, the necessary

and sufficient condition reduces to A (y)P(y) . constant vectors. For anyy

constant vector C = (c,c,...)', C'A(y) = C'. Thus, C'A (y) = 0 and henceV

A (y)D Z constant vectors for any vector D. Consequently (4.1) has a uniqueY

solution P (y) in Z(y).y

Next, we show that P (y) is the desired derivative. Write (for
Y

y E (YY u), otherwise 6 > 0 or 6 < 0, as appropriate)

A(y+6)P(y+6) - A(y)P(y) = P(y+ 6 ) - P(y).

Thus,

(4.4) [A(y+6)-A(y)] P(y+6) = (I-A(y)) [P(y+6)-P(y)]
6 6

The left-hand side of (4.4) is uniformly bounded and is in Z(y) for each 6 > 0

(since (I-A(y))VE G (y) for any V) and it converges to A (y)P(y) as 6 -+ 0. Wheny

considered as an operator from F(y) to E(y), [I-A(y)] has a bounded inverse.

Thus, as 6 - 0,[P(y+6)-P(y)]/6 converges to P (y), which must equal P (y), byy

the uniqueness proved above.

We now turn to the convergence (4.2). By Theorem 1, P n(y) converges geo-

metrically to P(y), uniformly in typpyu and in P0 (y). Also, since we use

Py (y) -0,
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n

P n+l,y(y) = A n-i(y)Ay(Y)Pi(Y).
j=0

But A (y)Pi(y) is a bounded sequence in ):(y), and as i - it converges geo-

metrically and uniformly to A (y)P(y). Also A(y) is a contraction when actingy

in E:(y), uniformly in y e Jyy u ] - These facts imply the desired convergence

of P (y). The limit must be a solution to (4.1).n,y

The assertions concerning P are proved in the same way and we omit the
yy

details. Q.E.D.

I

I

I
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V. TIGHTNESS OF {U, SMALL C, LARGE n)
nP

By "c small" and "n large" we mean that there are E0 0, NC < ,such

that the assertion holds for c < cot n > N . The actual value of t 0 will be

unimportant. Basic to the proof of weak convergence of {U(-)} is the tightness

of {Un, small c, large n1.n

Theorem 4. For each small E > 0, there is an N < -o such that the doublyC

indexed s~quence {UE, c small, n > N I is tight, where U = (yE-y)/.
n - n n

Proof. Define V(y) = (y-y) 2. We have

(5.1a) En En n = (Y E )ycQ V n1=N ) a(yn)(l-Yn) (I-V -fX2=N 21nYn+l-nc n n 1 n 1 c n n 2 n 2

£ s2 2 2 1 2 C El

(5.b) n(y+l-y) = C p[a (Yn)Yn(l-v I{Xc =N ) + a (y )(1-y )(1-v ItX£=N )].
n nl n c n n 1 n 1 E~ n n 2 n 2

For small c,

E n(Yn-Y) [, (y c)JI +B (y n)J < E (Y _-y)[ac(y c)J, +B(y)J,],
n n C n I n c n 2 ,n -n n n 1,n n 2 ,n

C -

since 0 < a (y) < a(y) and a (y) # a(y) only if yn-y > 0 (for small E), and con-

versely for the term. Using the above inequality, (5.1a) and Iyn+ 1 -YnI - O(C),

(5.2) EnV(YC)-V(y n ) < 2 C-(y yC C ,

+ I(yL)(1-yL)(I-v I(x -N})] + O(C2).
n n 2 n 2
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Define V1 E(n) by

(5.3) V 1 (n) =2,L (yf ) ( y L( yE - I)
n :I ni P(n 1  (n, yn

+ 2jiE(y y) 6 (y (Il-Y, J [P2(Ny 2 P(X , J-n, N Y)n n i 2 2y'n n 2 nj=n

Note that P i(X ,O,NiIyn) = I{X'i=N.}. By Theorem 2, the sums converge absolutely
n 1

(the summands go to zero at a geometric rate) uniformly in n, yt , X n Thus

IV(') I = O(F), uniformly in all the variables.

Next, evaluate

EV El(n+l)-V E (n) = -2 i(ynE-y)c(y n)YnV [P (N l y') - I{X" '=NI1]nl 1 I n Y n nl1 1 n n 1

!
20E(y -_Y)H(YC )(l-Y E ) [P (N y') IX 2=N }1

(5.4) + (2v {En(Y+ +)( +)yn - +l 1 n+l
j=n+l

(yn-y)a(y )yn[Pl(NllY n )

+ a similar sum for route 2.

We next show that the sums in (5.4) = ( 2) uniformly in all the variables

n, yn, X . For simplicity we work only with the first sum (route 1). By

lYn+l-Y -! 0(c), the smoothness of a(-) and 5(-) and Theorem 2, the sum changesnl n

by 0(s 2) if CYE -y)Wy )yC is replaced by (y L-y)cx(y C)yc. Upon making the

substitution and using the Markov property of {X.(y), j>nl with the value y

Yn and "initial" condition

I
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X (yE) = XE,

n n n

E CP I (X j-n-1,N lyE) = p (X' ,j-n,N yn )

n n+1' 1 1 11 1 n

we can rewrite the sum as

(5.5) 0(E) i En{ [P (NIn - P (N Yn )]-i =n+ 11n+1n

- (Xn+ij-n-1,NI yn ) - P (X+i,i-n1,NiyE)1 + 00 2

write 5yE = EC and use the differentiability (Theorem 3) of the P and
yn n+l-Yn '

the law of the mean to write (5.5) in the form

0(E)6yc E C [P 1(N Ic+s6 E) - Pl 1 XC +,j-n-l N lyc+s6y )]ds + 0(E2)
n Y n1 j 1 l n n y n+l ' 'n n

j=n+l 0

By Theorem 3, the sequence of absolute values of the integrands converges to

zero geometrically as j - uniformly in s, n, 6y , and X . This, together), , , nd n+I . Tis ogte

with n6Ycl 0(), yield that (5.5) is O(c 2). The same result holds for then#
sum in (5.4) corresponding to route 2.

Define V (n) = V(Yn)+V (n) . By (5.2) and (5.4) and the fact that the

2n
sums in (5.4) are O(e2), I

CC 2 - (liC

E V C(n+l)-V(n) < O(c 2) + 21.-y n-y) La(y E)yn (NllY))
n n n n

owing to the definition of a(-) and B(-) and the fact that ynC E jyyU , the

n

i
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bracketed term has its unique zero at y = y and it is positive (negative,

£ - £ -
.rasp.) for yn < y (Y > y, resp.). Thus, there is a y > 0 such that

(5.6) ECV (n+l)-V (n) < O(e
2) - EyV(y .

n n

By 1Vl(n)j = 0(.) uniformly in n, E V (n+1)-V C(n) .- O 2) - ,LyV (n), and hence
n

(5.7) EV (n) < (exp - £yn)EV (0) + O(C).

Again, since Vl(n)l = 0(), uniformly in n, (5.7) holds for V(yn replacing

v£ (n), from which the existence of the (N ) and the asserted tightness follows.

In particular, let 0 < K0 be arbitrary and let N be the smallest integer n

g such that (exp- cny) < K0c. Q.E.D.

I
I
I
|

I
I

iI

It
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vI. WEAK CONVERGENCE OF {U (.)}

Definition. Recall the definition of N given at the end of the proof of

Theorem 4. For any sequence of integers n > N, define Q n-N. Define

+n and similarly define the "shi fted" sequences U , X and J. . Then

r\E EU E. % C
(6.1) U =tf+ V'E[a (,y)J + $ (,y)J

n+1 n n n In C n 2n

By Theorem 4, {U , c small) is tight. For each integer N, define Un , YE,Nn n Yn

*%EC,N
J. via

in

1-cN \E ,N "-[c(1,N. E-,N + (,N)J-cn ]b NnN

[a+F y )J (y )J J (U(6.2) Un+l = uEN + - %c~e(n %Jln + 8( %E,N ~,
(.) Un1 n n in n 2n lbN (n

where b (-) is defined above (2.1) and we set U0  U0 if IU0l < N and equal
,N , \,, v ,N %E ,N

to zero otherwise. Also E,N =  -Y)/€r defines Yn J',n is simply the

n n n in

indicator function of the set {route i is tried first and call accepted} for

the system {Xn ',Yn 1 , where the choice probabilities {y% n N are used to select the

routes and {X n} is the corresponding route occupancy process. We supposen
"'F-,N£ = ;'' ,N 'vc,N

that c,N = n  Let n denote expectation conditional on Yn and n

EE,N- 1Since Yn YI < v' (N+I), for small t it is irrelevant whether we use a(: or

a, 8 in (6.2), and we use a, 8 for simplicity. By Theorem 1, if we show that

(for each N) f, (.) is tight and that all weak limits satisfy (6.3) until first

escape from SN ' then E (.)H is tight and all weak limits satisfy (6.3).

We now define some auxiliary processes which are used in the averaging

method ernloved in the proof. Let P denote the measure defined by the stationary

,,roc"ss {X (v) > with corr es!ondina expectation oPerator F. For each n,

it is necessary to introduce the process {X (y), Jn}, but with "initial" condition

X (y) - N.(I.e., after time n, the route choice probability is y.) The opera-
n n
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tor Ec,N denotes the expectation of functions of this process {X j(y) J>n} condi-
nN

tional on the "initial" condition Xn (Y) = X Let J. (y) denote the indicatorn n " l

function I{call arrives at j+l, is assigned to and accepted by route i}, when the

route choice variable is y and the route occupancy process is {X. (y)}. Whether we
J

intend the ergodic process or the process {X j(y), j>n} starting at time n with

X (y) =X ,N will be made obvious by use of either E or E N  Define
n n n

6u (Y) = [(a(y) ij (Y) + O(Y)J 2 j(y ) ] .

Under P, the right side has zero expectation.

ATheorem 5. For any sequence n> Net {U (.)} is tight in D[O,-). All weakly

convergent subsequences converge to a Gauss-Markov diffusion satisfying (6.3).

If EQC -0. as E - -, then the limiting diffusion u(-) is stationary in that

gu(O) has the stationary distribution. (In all cases u(O) is independent of B(.).)

(6.3) du = Gudt + adB, B(') = standard Brownian motion,

(6.4) G = ay) = [ I)y(l-y) [v 2 P (N2 1Y) - 1 P(Nlly)] y=y

2 2(Uo(6.5) 2 E(6u 0(y) 2 + 2 1 E 6u0 (Y)6u (y).

0n= 1  n

Proof. Part 1. Until Part 4, all superscripts N will be omitted. Thus
we1, writ { AE < 'v E ,€, i } or{c,N --,N .M.,N 'vF,N 1%,,N,i } W

we write (E ,tE nX ryn ,X n ...1 for (E ,x Ey nx' *,.n..) wen' 'X'ln n with then 'nn p en Pat I o . ..~actually work with the N-truncated process in Parts 1. to 3.

I
I
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By (5.1),

(6.6) E (U -U) [V y -n(l-y n ) [v2 I Ix =N1n nl n n n 2 n 2 1 i 1 N n

-/ 2,3,
Let f(-, = 3, tho space of bounded (x,t) functions with compact

support whose mixed partial derivativus up to order 2 in t and 3 in x are

continuous. To apply Theorem 1 to tO () , we will qet an f() of the form

f C(nE) = f(U ,ne) + f E(ne) + f E(nE) + f C(ne)
n 0 1 2

where the f.(nc) will be defined in the sequel. For each N, all o(') or O(-)
1

are uniform in all variables except their argument. We have

E ncn %E [f no(Un -f(U ,nc'fl + ft(Uns)s + o(E),
n fn+ n n n+ n t n

%E:%5'4 %5 14 "E X E~ ', L L S2E [f(u 1+,ns)-f('U,nE)] = 'E f (U',nE) U(%+1 -U) +Ef (U ,n) (U -U ) + o(S)n nl n m u n n+l n 2 Iluu n' n+l n

(6.7) =VF"f U nsy (l-y )b (U ) V V IX =N )u n n n N n 2 n 2 1 n 1

f I'L ('4 "'r 2.

+ uu(U ,nc)E n(U n-U n ) + o(E).
2

By the differentiability result of Theorem 3, we can rewrite the term

before the o(e) as follows:*

2 ( ̂n )  f ' C ^ , .F ̂v - n )  2
Cb (U f(U nc)EE kx(y )J +0(y~c3 IN n uu( n' n n ln n 2n

2

2 Ef 've y y y 2
= b (U (U ( Cn)E[()j (y)+B(y)i ()] + 0(E).N n uu n n )2n

2

*The terms Ej 1 (y) and -J (y ) differ only in that in the first case y is ue

as the choice variable to got the successor state to X , and Yn is used in the

second case.

3*m am n e o n s umunan m " " nmmmua u In m- nnnnunnu m nuu u
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Part 2. We will "average out" the terms in (6.7) one by one. Define

fE (nE) (analogous to the definition of V (n) in the last section)

(6.8) f (lit N (U ) (]-y (U',n ) Lv,( -(X .. . . y) -
1 (N 2 yn n \)n n n

- P2(N 2 yn)) - 1 p (XLnnNl[t"n) - p I(]t)) ] "

Proceeding analogously to the method of Theorem 4 for V (n), we evaluate

i C'' -C i %'E
(writing P (X nj-n,Nily n) in the more convenient form En P (X n+,j-n-1,NIln)

in T 3 below, for j I n; see above (5.',))

(6.9) iEfF(nE+C)-f(nE) = T + T + T
n 1 1 1 2 + 3

T 2  (1 -") b (Y) f (UnIE) I (n 1'nX lx
n n N n n) 2({ ~n - X 2 1 n 1

2 %P(E 10 -1 ,N 1 I '2" %C

( -2 nP-(N2 y ,l)Vn1 +P (N(En)n )

T =/iif ( Vn( +)b )y (1-y )J
2 n u nc) N n+l n+l n+l

IV(P-n+~-n-,NI +I -, (,' , n. l 2-, , .n 2. -, n. 1' nF)),.

I V ~ (P 2 (+, ,j-n-l,NIY + )-P (N 2 I£+1 M

T r,,,I f (,nE) (ly )b (UH
3 u n n nNn

\E 2 ( E N1 2 l

un+ En I 2(P n+l'jn- lN 2Iy n)-P (N 2Iyn

- 0v ( 1(~ 4+1 1n N , 1 ly )-v' (N Il n~) M.
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Using the differentiability result of Theorem 3 and the fact that

v2P
2 (N2 1y) = vlPl(Nl1y), we get that T1 equals the negative of the first term

on the right side of (6.7) plus

(6.10) EPb -(Un)-'yfy(l-y) [ 2P)(N 2 Iy)-lPl(NllY)]B1L ]  + o(t:)

In T2, by replacing Yn 1 by yn and b (U )f (U ,nc+c) by
nn N n+ u n+1

'\'C E: I.CE:'\' C
bN (U )f(U ,nE) + (b N (U )f (U n )) UnlU

we only alter the term by o(E). Let us make these replacements in T2 and denote
0 0 2 2

the resulting term by T2 . Now, split T2 into two parts (T21 , T22 ), the first

(second, resp.) being T2 but with b N(U )f (U ,n) ((bN(U )f CU,ne)) CU n'-U )Nnu n Nn u n u n '

resp.) replacing b N(U n+l)f u(U n+l,nE+E:). By the differentiability results of
NnE u E

Theorem 3 and the fact that lYn+l-YnI = 0(c) and an argument like that below

(5.5), it can be shown that T0  + T = oC). Thus
21 3

(6.1a T + T 3 o(E) + IEWy (1-y )(b NUn )f (U n 'n E))u

2 3v n\ n2 N(N U nE
'\'t ,., . ",, r. 2'vE Y- p I )

En(U n+-U) [v2(P(x j-n-,N21Y n) (N2 1y
Sj=n+l n+l

- vI (P (CX n + ,j-n-1,N l lIn ) - p(N lln))].

We now simplify (6.11a) by a series of replacements, each one altering the

term by o(c). First replace all the y by y. By Theorem 3 and Ibc -CI 0(r)

and a differentiability argument such as used below (5.5), this only alters the
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term by o(). Since v2P 2(N2 1 - 1 (Ny) = 0, we delete this part of the result-

ing summand. We now have

(6.11b) T + T3 = O(E) + /rc[b (U )f (U',nEu En(Un ~-Un) n q

N n un u nn~l ~j-n+l

where for j > n+l,

q. = [v 1 +,j-n-l,N2 (Xn+l,j-n-l,N y ) ]y(l-y= u(y).
1 2 n 2 1 nl 1 )yl-) n+l

Finally, by the differentiability result of Theorem 3, (6.11b) equals

(6.12) T + T o( ) + Eb (Un ) [b (Un )f (U ,nF)3 u 6u (Y)6u.(y)3jn u n U =n+l n

The difference between (6.11b) and (6.12) is simply due to whether Yn or y ig

used to get Xn+1 and U n+1 from X and U nnl nln n

Part 3. Now, we "average out" the sum in (6.12). Define fE (ns) by
2

f(ne) = eb (U )[b (U )f (U ,ne) fu n (y)6k(y)-EUjf2 N n j 3uk '

J=n k=j+l

By the (uniform) geometric convergence result of Theorem 2, the sum converges

absolutely and If'(nE)l 0(c). By a straightforward calculation using the
2

stationarity of {u (y)) under P, we can show that

icfC(+E)-f5 (nE) -(6.12) + 0(E)
n 2 2

+ cb (Uic)[b (U )f (U',fE)] ~E(6 Y6(y .
N gb(n) [N(Un) f u 0

Finally, we treat the term before the o(c) of (6.7) - in the form in

which it L written below (6.7). Define f0 (n) by
0

, 1 ..
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fE fuu = U n ,nE) b (0% E _ 2
f0 (n)=e- 2 -Nn E(ui() E6

j=n

By a procedure similar to that used for f (nc), it can readily be shown that

f(Un,n£)
E(E +£)f ( f uu n 2 £-. 2
E f (nE) = 0(E) + 2 b (U n )E(6u 0 (y))n 0 0 2 Nf 0

fuu (Un ne 2 ',E-- -- 2
- E *b 2 (U )E [a(y)Jln (y)+8(y)J2n (y)]2- 2 bNn n ln

Summarizing the previous calculations

\jE E C I~E C IE ~E FE
E f (n£+c)-f (nE) = o(E) + f t(U ,ne) + Ef (U ,n£)GU b N (U

(6.14) + Ef (U , n£)b (U )bN(U) E 6u (y)6 u.(y)
u n Nu n N l

f (U ,n E) 2 - - 2

+ E bN +2 E 6u 0 (y) 6u j (y) +.
2 N n 0 J~ 0l

Part 4. Conclusion. Reintroduce the superscript N. Fix N. All the

e ,N %E,'N %,E,'N
f., are bounded and of order O(/re) and fU0 '  = U (0)} is tight. Also10

%£,,N E,N E,N
E nf (n£+£)-f (nE) - O(E). Thus, by [7), Theorem 2,n

the bounded sequence {U (.)} is tight in D[0,-). Let E index a weakly con-

vergent subsequence with limit (.). Since A is defined to be the infinites-

imal operator of (6.3), by (6.14) and Theorem 1, we see that UN(.) solves the

martingale problem corresponding to an infinitesimal operator AN whose coeffic-

ients equal those of A in SN . Thus, by Theorem 1, (U -)) converges weakly to a

solution u(.) of (6.3). The independence of B(.) and u(0)'is a consequence of

the fact that a(-) is the unique solution to the martingale problem. The

stationarity assertion is not hard to prove, but we omit the details. Q.Z.D.
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VII. ASYMPTOTIC THEORY OF AN ADAPTIVE QUANTIZER: INTRODUCTION

In recent years there has been a great deal of effort concerning the effic-

ient quantization of signals in telecommunications systems, e.g. of voice

signals in telephone transmission systems. Let z(-) denote the actual signal

process and A a sampling interval. In the problem of interest, the signal is

sampled at moments {nA, n=0,l,..., then the samples {z(nA)1 are quantized, and

it is only the quantized samples which are transmitted. Let 0 = 50 < &1 < ... <

L-1 < &L= ., 0 = n < ..2 - < JL where &i n i+l' i = 0, ... , L-1, are real

numbers. Let the quantization function Q(-) be defined as follows: there is

a y > 0 such that for z(nA) > 0, Q(z(nA)) = yni if z(n) C 1y&i-,Y&i ) , and set

Q(-z) = -Q(z). The parameter y is a scaling parameter. As the signal power

increases (decreases), y should increase (decrease) for efficient reconstruction

of the signal from the sequence of quantizations.

The problem of choosing appropriate values of y when the signal powers can

vary by an order of magnitude or more has led to the study of adaptive quan-

tizers. we give only a brief description in order to formulate the problem.

For more detail and discussion of the engineering considerations, the reader

is referred to the references [4], [5]. Let c denote a "rate of adjustment"

parameter for the scale parameter y and let y denote the value of the adapted

scale parameter at the nth sampling instant. Set 8 E (0,11 and let 0 < 1I

ME < ... < < - with M <1, >1. We study an adaptive quantizer which

is a truncated form of the (typical in such an application) adaptive system

E,_ C C C fIn) E E~~~lY~(7.1) Yn = Cy )B, where B = M if ,yE)
yn+l n n n i nzM i-1 [y & i- iI

Goodman and Gersho [41 did a thorough analysis of (7.1) for the case B

1 and {z(nA)} independent and identically distributed. With 8 < 1, the systm
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has some desirable robustness properties and this case, together with simula-

tions, is discussed by Mitra [5] and others. The last reference is concerned

more with reconstruction of the process z(-) from iQ(z(nA)) and does not give an

asymptotic analysis.

Generally, with non-i.i.d. {z(nA)), it is hard to get concrete information

on {y } for large n. If the signal power varies over time or if (as is real-

istic for moderate values of A) {z(nA)} is not i.i.d., then techniques such

as used in [4] fail, but for small rates of adjustment (W) an asymptotic

analysis can still shed light on the process behavior. At the present time,

it seems that little more can be done for the general case. Here, we scale the

problem so that an asymptotic analysis is possible. For mathematical as well
E

as practical purposes, it is useful to confine y to some finite positive

interval [y£,yu ]. Now, we define the truncated form of (7.1) which will be

studied. Let a > 0, 0 < ce < 1 and let {£i} be real numbers suc- that £ <

£2 < ... < kL and Xi < 0, xL > 0. Then we use

£ n ( l-c BeiYU
(7.2) l (yn n '

where I denotes truncation and

E£ £

B = (l+E2 ) if Iz(nA)1 E [Yn&ilY C
n n

The asymptotic results can be used to get information on the effects of the

{.}, A, structure of z(-) and a on the performance for small c. For notational

convenience below, let y < 1 and y > 1. Rewrite (7.2) in the form (7.3), where

y n y[l-cca log y]+O(c ) and (l+bn) BN are used, and F and b have the

obvious definitions.
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(7) y L c ~ 2~ u 2 'u

n7.) .' iy(l+cb)-cay loq y C+O(2 ] 2[ y + , , z(nA) )+O ,2 ) ]n n n n n Y9,n

In [41, the process {log y6) rather than {y i is dealt with.
n n

We proceed in very much the same way that we did for the automata problem.

The main difference arises from the unboundedness of tz(nA)}, under assumption

(7.6). By definition,

L
bC = £II{ z(nA) I C ) I.
n in

I There are continuous functions k.) such that (7.4) and the properties belowl

it hold.

E ( E (l+CaC(yC ) - Cay log Yn + 0(2
Yn+l n n n n

ye + £ F (y,z(nA)) + We 
2 )- n +  nF

where

(7.5) a8 Y) RE(n)I IZZ C [ylYE ,i
n i YE

Also, Z( ") can be chosen such that I£(.) = i. out of an 0(c) neighborhood ofl i i
y£ (resp. yu ) if k. < 0 (resp. Z. > 0), and 0 > k (y) > Z. for Z. < 0 and

1 1 -- 1 -

C
0 < z..(y) < 9. for X. >0.I- - 1

I

I
! _ _ _ _ _ .- -~ -------- ---- - - - - - -



-28-

Some assumptions. For specificity, z(-) is assumed to be a stationary

Gaussian process with a rational spectral density. Thus there are an asymptot-

ically stable matrix M, a matrix C, a row vector D, and a process v(-) such that

(7.6) dv = Mvdt + Cdw

z = Dv, w(-) = vector-valued standard Brownian motion.

This assumption is not essential - only certain smoothness properties of

the multivariate density are used, together with the exponential rate of

decrease of the effects of the initial conditions.

2Define F (y) = EF C(y,z(nA)) and F(y) = EF(y,z(nA)). Let a var z(t).

We have (the subscript y denotes the derivative)

2 22 2
77 d(F(y) - 2 i exp- exp - - /y

d y Y / 0 i=l 2 002 20

2 L-1 2 2 2
- 1 ( i- ki+l)i exp -C y /2a0 - ci/y.

o i=l

We can see from the terms in (7.7) that F(y)/y is the sum of two strictly convex

functions, the first being bounded and having a negative slope, and the second

going to as y - 0 and to - as y . Thus there is a unique y E (0,-) such

that F (y) = 0. Also P(y) > 0 for 0 < y < y and F(y) < 0 for y > y and F y(y)

$ 0. We assume that y E (yyu). For small c, the assertions in the last

sentence hold with F replacing F. Define UE , (y£-y)/IrE and let E denoteC n n n

expectation conditioned on [v(JA),J<nI.

I
,=,.=,,,, ,,.--, .-----.- =-,,--m--,--.---- - - - ---- - -- -. nnn.,-- UnNI
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V1I1. TIGHTNESS OF {U', SMALL C, LARGE n)
n

The proof is similar to that of Theorem 4 in Section V and we oniy set

it up and indicate how to deal with the fact that fz(nA)) is unbounded.

Theorem 6. Under the conditions in Section VII, the conclusions of Theorem 4

ghold.

Proof. Define V(y) = (y-y) There is a y > 0 such that (y-y)F(y) <-yV(y),

all c > 0 and y E [yy u] . We haveI
C E 2 C E: CE

I(y -y ) = (e y 4 -d yC (y )+£[F (y ,z(nA))-F (yn)]+0( 2(n+l-Yn) =ri+l n L c n n

L
(Y) = Yj ZE(Y)P{Yi 1 <Iz(n ) I<yFi. - a(y log y)

(8 .1)
ii~l L

E E (y C -Y) = CF (YE) + E yF Z97(5,) [Plyt <Iz(nA) <yk v(nA-A)l

- P(y iiz(nA)I<y Ci}3 + o 0-2

Y'Yn

As done in connection with (5.2) (where a., B. were replaced by a,8), we get an

upper bound for the second moment by replacing X (yC) by ki (hence F by f). Thus

1 n 1 E

(8.2) nV(Yn+ )-v(y) o(2 ) + 2E(y-y)F(yE

I n rle n ni

+ 2(yC-y) [sum in (8.1) with t E*) replaced by "

I

i _ _ _
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£ (,n)where

Next, define V1 (n) by VE(n) -V V1

L

(8.3) Vl(n,y) = 2c (y-y) I I y. [P{y~i lfz(jh) Iy~iv(n-A)1
j=n i=l

- P{y&i l <lz(nA) I<Yt.i

IVC(n)j can be estimated by use of the following fact. There are K < ard

a > 0 such that l Mtl < K e-at. There is an a1 > 0 and a K < - such ,rhat for

-aTl/2

T2 > T1 > 0 and on the set {v(t): Iv(t)Ie <j),

-al 1

(8.4) IP{v(t+T.)EB., i=l,21v(t)} - P{v(t+T )EB. i=1,2}I < Kle1 1' 1 1'-

fo:x all B1, B 2 '

In order to use (8.4) (in this application we set B2 = range space of v(t)),

write the sum in (8.3) as

H

(8.5) +

j=n j=H+l

where H = min{m: e- (mn)Aa/2 Iv(nA-A)I<l1} = 0(l+max(0, loglv(nA-A)I)). Then

the first sum in (8.5) is 0(l+max(O, logjv(nA-A)I)), and the second is 0(l) by

(8.4) and the summability of Ij> 0 exp -a jA. Thus IVI(n)I =

O(c) [l+max(0, loglv(nA-A) I)] < 0(c) (l+Iv(nA-A) I) . From this point on, the

proof is exactly the same as that for Theorem 4. Q.E.D.

'I
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IX. THE LIMIT THEOREM

-'E ' E

We continue to use the tilde ^ terminology of Section VI, and define U n , Yn
'\. F

E etc., as there. Also, set z(nA) = z(n A+nA) and v(nA) - v(n A+nA). The idea

n 
C

now is still to prove weak convergence of U (-). We use E for expectation condi-

. ,N haF bN dfn,N -.
tional on fv(jA), j<n+n E we have ((9.1b) defines ynny= (Yn -y/,)

E nU It 1fl (C, /

(9.1a)U+ / n( n
E ) + y n ( (Yn'z(nA))-F E(Yn + O(E39 2

'X) ,N = e.N + (uE ,N C,N % % - + ,N /2 "
(9.Lb) U U ) + (F (L ,z(nA)) F (n ) + O(e/) lb( & N)

nl n C Yn C Yn C n .bN (U

i
Theorem 7. Under the conditions of Section VII, the conclusions of Theorem 5

hold, but where G = F (y) and (stationary process z(') used)

a = EF 2(yz(O)) + 2 [ EF(y,z(nA))F(y,z(O)).

n=l

Remark. If M, C or D were time-varying, then an extension of the tech-

nique is possible, provided that the tjme variation per step is O(E). The limit

diffusion yields information on the dependence of the performance on the para-

meters a, fti ), A, {E.i, as well as an estimate of the asymptotic variance and

correlation function for small e.

Proof. Except for the unboundedness of the noise {z(nA)), the proof

would be essentially the same as that of Theorem 5, and only an outline will

be given.

Owing to the truncation 1u n'NI < N+l, the F., F in (9.1b) can be replaced by

F and F, respectively, without changing the values, for small E. Let us make

the replacement. Fix f(-,.)E: ; 2 3  Drop the superscript N on all variables

for notational convenience, an done in Theorem 5. Then, by a Taylor expansJon,
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(9.2) Enf(U +lnE+k)-f(U'n :) = o(c)+Elf (Un'nt)+ f (U'nE) (UnbN (U
n nl n t n u n y n N n

2rEf ('U ,nc)En[F(y+ ,z(nA))-P(y+- b )] Nn)

+ - f(U ,flE) E [F y(- u z (nA)) (Y+/rEC)]I b (U ))
2 uu n n y n n N n

Since the second derivative of EF(y,z(nA)) with respect to y is bounded by
n

constant[l+Iv(In-A) I, the next-to-last term of (9.2) can be written as

(9.3) VE:f ("U',nE)-nE[F(y,z(nA))-F(y)]b (U
u n n N n

%C E: '
+ Efu(Un ' n E )3 y  n[F(yz(n6))-F(y)] U nb N(U )+O(c)[l+Iv(nL-A) I.

y=y

The last term of (9.2) can be written as (recall that F(y) = 0)

'V. E 'Ve - 2 2'V
(9.4) f fuu(Un)En[F(Y,'z(nA))-F(Y)] b (Un) + o(E).

2 un n y N n

Now, we use the method of Theorem 5 in order to averaqe out the terms of

(9.2). We use f (nE) = f(Un,nc)+ i 3 fi(nE). Define f 3 (nC) by (to average

out the second term of (9.3))

CE ^'C -- - 've
f 3 = f (U n E)b N (Un)Ui n T E nF(y,z(jA))-F(y)]f3 =fu(n, )N{UnUn . y E n

j =n y=y

By an argument similar to that used below (8.5), together with the derivative

bound stated above (9.3), it can be shown that En f 3 (nc+)f 3 (nc) - - (second

term of (9.3)l + o( ) II + J'(nA-A) 12] and that If3(nc) < 0(c) [ + IV(nA-A)II.

Next, intruduce f' (nt ) (to avedc aqu out (9.4)):
4

S ----.- ---- -~-- --
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f (E) f ( 2 2

n )Nf n  L [E(F (yz(jA))-EF (y,z(jA))].
2 uu n n n

3=n

Then, as for f3 ' we have IfC(nE) l < O(E)[1 + v(nA-A) j]. Using this, it is not

hard to show via a small amount of manipulation thatI
% ,' x ~c 2

E f : t) - - f (U,nL)bN('U) F (y,z(nA))-EF 2(y (nA))1i EnA2 IN n n

+ o() [1 + I '(nA-A) I

Next, introduce f5(ne) in order to average out the first term of (9.3):

f (nE) = f ('U ,ne)b (U JA))
5 u n N n nI 3=n

Then, again, If (nE)I = o(,r)( + Iv(n-A)I) and we can writef5
(9.5a) fe(fE+E)-f C(nE) - (first term of (9.3)

+ E if ("E nc)b (U f (U n E F( (jA) )n u n+l N  n+l u n N n n+l
jsn+l

With a small amount of manipulation, we can show that the last term of (9.5a) equalsI
(9.5b) eb N(Un )[f u(U n' n)b N(Un) Hu E WnF(Y'z(JA))F(Y'z(nA))+°(E) [I+l'(nA-A)1].

j-n+l

Finally, f (nE) is introduc'nd In ordtir to avoraqu out the sum term in (9.5b) in

the same way that f2(nc) was used to average out (6.12) in Theorem 5. Define2I '
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(9.6) f6 (n) = (f (U ,nC)b N(U ) b N(U

j=n k-j +1 n

By (8.4), f((nt) is well defined and is O()tl + Iv(nA-A) as will now be
6

proved.

C EDefine H as below (8.5) and let E B. denote the (j,k)th summand in (9.6)
n jk

and write the sum in (9.6) as

E BB + I
j=n k=j+i j=H+l k=j+l

By the argument connected with (8.5), the inner sum in I is bounded by

(9.7) IE EnB.l < EIEB j I = 0U I nA- )
k=j+l n 3k k=j+ln j jk

Thus, by the bound On (H-n), I < O(1 + IV(nA-A) 12). To treat II, we note thesuch t atEfo Hjk <kK2  x -al(J-n)A.

following: there is a K2 < - such that for H < j < k, I E  1 -

Also, for k > j,

i. F(y,'Z(RA)) < K 2 [e xp -al(k-j)A+IflI(exp -a(k-j)A)'v(JA-A) [ > i)].

With a little more work, these estimates yield the existence of a K3 < - such

that 1EB'kI < (l+0(IV(nl-L)I)K 3 exp -alA[(j-n)+(k-j)]/2, from which the fact

that II = 0(l) and the last sentence of the previous paragraph both follow.

It is straightforward to show that

I
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h(kf) k -(sum term in (9.5))
n (

b (U ) [f (Unnb )] '(y,z(nA))F(Y,'z(O)) + o(c) [l+Iv(nA-A) .+bN( n fu~t n n)1 N n u n=

Summarizing, with f (nE) defined by fE (nd) f('P ,nc) + xi 3f i
(n o ), we

i have

(9.8) E f'(nc+0)-fL(nr:) = o(C) [l+Iv(nA-A) f (U nt) + ,f (U ne4P (Y) Unb (U
n n n y 2

+ eb N (Un)[f u(Un ,nc)b N( ) n -' EF(y z(nM)F(y'z(0))

rue f u.(U nne) 2)

ebN (UN) 2 EF (y,z(O))+o(E) [l+Iv(nA-A)[2)

N

Now, if the fU ()) (returning to the use of superscript N) were tight

for each N, then (9.8) and Theorem 1 imply that any weakly convergent sub-

C N
sequence of {'€,N) converges to a diffusion with operator AN , whose coeffic-

I ients equal those of A in SN and, hence, that the original {UL(')} converge

weakly to the solution of (6.3) with the G and a defined in Theorem 7.

But (dropping the superscript N again) 16 = c (n0I 0( [l+Iv(nA-A) 2]

and I~Ef (ne+c)-f (nE)j = v( + 0(E) (+lv(nA-A) I and for any T <

K >0, the Gaussian property implies that

I lim P{sup Ov(n) 12 < K) = 0.

c-0J n<T/F

Thus, tightnes. follows by The()rm 2 of 1l.1 or [71, as it did for the case of

I rheorem I. Q.E.D.

I
.t

. . .. . . . ... . .. .. . ... ... .i " -- - i . . . . - -- - _ .. . . _ _ _ _
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